How to Prevent Thromboembolic Complications in TAVI

PETER WENAWESER, MD

Swiss Cardiovascular Centre, University Hospital, Bern, Switzerland
Potential Conflicts of Interest

• Proctoring and lecture fees from Medtronic, Edwards Lifesciences and Boston Scientific
Objectives/Learning Issues

• To understand neurological complications
• To learn the actual rate of these complications in contemporary series
• To develop clinical strategies to decrease these complications
Prevalence of Stroke in the US
Roger VL et al. Circulation 2011; 123: e18-e209

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Both sexes</td>
<td>7 000 000 (3.0%)</td>
<td>795 000</td>
<td>135 952</td>
<td>829 000</td>
<td>$40.9 billion</td>
</tr>
<tr>
<td>Males</td>
<td>2 800 000 (2.7%)</td>
<td>370 000 (46.5%)†</td>
<td>54 111 (39.8%)†</td>
<td>371 000</td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>4 200 000 (3.3%)</td>
<td>425 000 (53.5%)†</td>
<td>81 841 (60.2%)†</td>
<td>458 000</td>
<td></td>
</tr>
</tbody>
</table>
Stroke Risk Profile

- Female Gender
- Active Smoking
- Atrial Fibrillation
- LV Hypertrophy
- Systemic Hypertension
- Diabetes Mellitus
Aortic Stenosis Patients

S. E., 83 YO Female

10-Year Stroke Probability

Calculated Risk: 84%
Expected Risk: 23.9%

Assessment of Aortic Arch Atheroma by TEE and Correlation With Aortic Stenosis
Osranek et al, Am J Cardiol 2009;103:713-17

• Prevalence of severe aortic atheroma increased with severity of aortic stenosis

• 54% of patients with severe aortic stenosis had severe aortic arch atheroma

• 61% of patients >65 years with severe aortic stenosis had severe aortic arch atheroma
Stroke due to CV Interventions

- Isolated Valve: 4.8 – 8.8%
- Isolated CABG: 1.4 – 3.8%
- Double Valve: 9.7%
- CABG and Valve: 7.4%
- PCI: 0.4%
- TAVI: 0 – 9.6%

Fuchs et al., Circulation 2002; 106
Selim et al. NEJM 2007;356:706-13
Incidence of Major/Disabling Stroke in TAVI/SAVR
Cerebrovascular Events After 30 Days and 1 Year – Partner A Cohort

Smith et al. NEJM 2011;364:2187-98

Major Stroke

<table>
<thead>
<tr>
<th></th>
<th>30 Days</th>
<th>1 Year</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAVI</td>
<td>3.8</td>
<td>2.1</td>
<td>0.20</td>
</tr>
<tr>
<td>SAVR</td>
<td>2.4</td>
<td>2.4</td>
<td></td>
</tr>
</tbody>
</table>

All Stroke or TIA

<table>
<thead>
<tr>
<th></th>
<th>30 Days</th>
<th>1 Year</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAVI</td>
<td>5.5</td>
<td>4.3</td>
<td>0.04</td>
</tr>
<tr>
<td>SAVR</td>
<td>5.5</td>
<td>2.4</td>
<td>0.04</td>
</tr>
</tbody>
</table>

p = 0.04
All-Cause Mortality or Stroke

All Patients (n=699)

HR [95% CI] = 0.95 [0.73, 1.23]

P (log rank) = 0.70
All Stroke

Transcatheter vs Surgical

Δ = 3.8

Δ = 5.7

12.5%

8.7%

10.9%

16.6%

Log-rank P=0.05

No. at Risk

Transcatheter 391 364 335 318 205

Surgical 359 324 281 256 169

Months Post-Procedure
Impact of Stroke on Mortality

- Major Stroke (n=15)
- No Major Stroke (n=164)

P (log rank) < 0.0001

66.7% mortality for Major Stroke group.

Figure 3:
-Freedom from All-cause Mortality (%)

- Stroke Within 30 Days
- No Stroke Within 30 Days

Log-rank P = 0.002
Results – Outcome

Cerebrovascular Events

- Without CABG: 2.2%
- With CABG: 3.6%
- Transvascular: 3.7%
- Transapical: 3.5%

n=6517, n=3458, n=2689, n=1177

Surgical AVR
TAVI
Clinical Outcomes at 30 Days (1)

<table>
<thead>
<tr>
<th>Clinical Outcome</th>
<th>TF (N = 96)</th>
<th>TAA (N = 54)</th>
<th>Overall (N = 150)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-Cause Mortality</td>
<td>2 (2.1%)</td>
<td>6 (11.1%)</td>
<td>8 (5.3%)</td>
</tr>
<tr>
<td>Cardiac Mortality</td>
<td>2 (2.1%)</td>
<td>5 (9.3%)</td>
<td>7 (4.7%)</td>
</tr>
<tr>
<td>All-Stroke*</td>
<td>1 (1.0%)</td>
<td>3 (5.6%)</td>
<td>4 (2.7%)</td>
</tr>
<tr>
<td>Disabling Stroke</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Major Vascular Complication</td>
<td>5 (5.2%)</td>
<td>4 (7.4%)</td>
<td>9 (6.0%)</td>
</tr>
<tr>
<td>Major Bleeding</td>
<td>19 (19.8%)</td>
<td>11 (20.4%)</td>
<td>30 (20.0%)</td>
</tr>
<tr>
<td>Life-Threatening Bleeding</td>
<td>2 (2.1%)</td>
<td>3 (5.6%)</td>
<td>5 (3.3%)</td>
</tr>
<tr>
<td>Rehospitalization†</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
</tr>
</tbody>
</table>

Event Rate in the VI Population

<table>
<thead>
<tr>
<th>Primary Endpoint</th>
<th>TF (N = 95)</th>
<th>TAA (N = 54)</th>
<th>Overall (N = 149)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-Cause Mortality</td>
<td>1 (1.1%)</td>
<td>6 (11.1%)</td>
<td>7 (4.7%)</td>
</tr>
</tbody>
</table>

* Severity of the one TF stroke unknown.
† Rehospitalization for valve-related symptom or worsening of congestive heart failure.
Incidence of Major/Disabling Stroke in TAVI Patients

- In high-risk patients: 3-5 %
- In intermediate risk patients: 1-3%
Incidence of Silent Brain Ischemia?
Cerebral Ischemia After TAVI
Kahlert PK et al. Circulation 2010;121:870-878

![Graph showing new lesions and lesion volume](image)

New Lesions
- Edwards: 86%
- CoreValve: 80%
- SAVR: 48%

Lesion Volume
- Edwards: 81 mm³
- CoreValve: 61 mm³
- SAVR: 224 mm³
Transcranial Doppler Sound Detection of Cerebrovascular Microembolism

Erdös G et al. EJCTS 2011

Transfemoral vs. Transapical TAVI

Self- vs. Ballonexpandable TAVI

<table>
<thead>
<tr>
<th>Period in min</th>
<th>IN</th>
<th>BV</th>
<th>DP</th>
<th>PI</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF-AVI</td>
<td>36 (17-58)</td>
<td>3 (2-6)</td>
<td>2 (1-5)</td>
<td>26 (15-60)</td>
<td>70 (49-117)</td>
</tr>
<tr>
<td>TA-AVI</td>
<td>36 (17-58)</td>
<td>3 (2-6)</td>
<td>2 (1-5)</td>
<td>26 (15-60)</td>
<td>70 (49-117)</td>
</tr>
</tbody>
</table>

p = .004

<table>
<thead>
<tr>
<th>Period in min</th>
<th>IN</th>
<th>BV</th>
<th>DP</th>
<th>PI</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE</td>
<td>1454</td>
<td>1454</td>
<td>1454</td>
<td>1454</td>
<td>1454</td>
</tr>
<tr>
<td>BE</td>
<td>1454</td>
<td>1454</td>
<td>1454</td>
<td>1454</td>
<td>1454</td>
</tr>
</tbody>
</table>

p = .027

p = .024
Mechanism of Thromboembolic Events

- Transcatheter Aortic Valve Implantation

- Acute
- Subacute
- Late Predictors for Cerebrovascular Event

- NOAFib

- Chronic Afib
- Atherosclerotic Disease Burden

- TAVI
- Spontaneous Risk

- Age, Gender and Risk Factor
 Matched Patient Population

- Stroke
 - Minimal Touch Technique
 - Embolic Protection Device
 - New Generation Valve Prosthesis

- Protection
 - Intra- and peri-procedural Antithrombotic Therapy

- Strategy
 - (N)OACs

- Patients with Sinus Rhythm
- Patients with Afib

Stortecky et al 2014
Therapeutic Options for Stroke Prevention

Drugs

Risk assessment

Protection Devices
Summary

• Stroke remains an important issue for patients undergoing TAVI
• Further improvements in the field of antiplatelet and anticoagulation treatment are warranted
• The role of protection devices need be determined
Thank you

PETER WENAWESER, MD

Swiss Cardiovascular Centre, University Hospital,
Bern, Switzerland
AK St Georg Study

Embolic debris captured during TAVI procedures at AK St Georg (Hamburg RECAPTURE)

52 cases of TAVI using Claret Medical Cerebral Protection System performed at AK St Georg (Hamburg)
- Using Sapien S3/XT, CoreValve, etc. valves

Filter contents subsequently analyzed by CVPath Institute
- Debris captured in 96% of patients

Cerebral embolic debris captured in TAVI patients (n=52)

<table>
<thead>
<tr>
<th>Debris Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any debris</td>
<td>100%</td>
</tr>
<tr>
<td>Acute thrombus</td>
<td>99%</td>
</tr>
<tr>
<td>Organizing thrombus</td>
<td>79%</td>
</tr>
<tr>
<td>Valve Tissue</td>
<td>65%</td>
</tr>
<tr>
<td>Arterial Wall</td>
<td>47%</td>
</tr>
<tr>
<td>Calcification</td>
<td>38%</td>
</tr>
<tr>
<td>Foreign material</td>
<td>15%</td>
</tr>
</tbody>
</table>

Note: percentages reflect percent of filters in the series in which each particular tissue type was captured. Some filters captured several types of debris, so percentages will not add to 100%